Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
K. Palani, ${ }^{\text {a }}$ M. N. Ponnuswamy, ${ }^{\text {a }}{ }^{\text {* }}$ P. Jaisankar, ${ }^{\text {b }}$ P. C. Srinivasan ${ }^{\text {b }}$ and M. Nethaji ${ }^{\text {c }}$
${ }^{\text {a Department of Crystallography and Biophysics, }}$ University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and
${ }^{\text {c }}$ Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail:
mnpsy2004@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.055$
$w R$ factor $=0.144$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-Chloro-1-phenylsulfonyl-1H-indole-2-carbaldehyde

In the title molecule, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}_{3} \mathrm{~S}$, the phenyl ring and the mean plane of the indole system make a dihedral angle of $78.3(1)^{\circ}$. The crystal packing is mainly stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Indoles form an integral part of many natural products. They possess a number of active sites, allowing the generation of molecular diversity in a variety of chemical reactions (Farhanullah et al., 2004). In continuation of our structural study of indole derivatives, we present here the crystal structure of the title compound, (I) (Fig. 1).

(I)

The bond lengths and angles in (I) (Table 1) show normal values (Govindasamy et al., 1998). The angles $\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$ and $\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 10$ confirm the distorted tetrahedral geometry around atom S1, which may be attributed to the ThorpeIngold effect (Bassindale, 1984). The phenyl ring and the mean plane of the indole system make a dihedral angle of $78.3(1)^{\circ}$.

In the crystal structure, the relatively short distance between the centroids $C g$ of neighbouring pyrrole rings, $C g \cdots C g^{\mathrm{i}}=3.549$ (3) \AA [symmetry code: (i) $\left.-x, 1-y,-z\right]$, indicates a possible $\pi-\pi$ stacking interaction, which contributes to the packing stabilization (Fig. 2) along with intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

To a solution of 1-phenylsulfonyl-2-bromomethyl-3-chloroindole (5 mmol) in dry chloroform (60 ml), bis(tetra- n-butylammonium) dichromate $(5.0 \mathrm{mmol})$ was added. The resulting solution was refluxed for 8 h and the reaction mixture was then filtered through Celite (10 g) to eliminate inorganic components and unreacted tetrabutylammonium salts. The Celite was washed with diethyl ether (75 ml). Evaporation of the combined organic solvents followed by chromatographic purification using hexane and ethyl acetate (7:3)

Received 1 December 2005
Accepted 22 December 2005

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2
The molecular packing of (I), viewed down the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
afforded the indole-2-aldehyde as a pure crystalline solid in 84% yield (m.p. 427 K). Spectroscopic analysis: IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 1677, 1357,$1176 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): 7.26-7.79 ($m, 8 \mathrm{H}$,
$\mathrm{Ar}-\mathrm{H}), 8.25-8.27(d, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, indole-7H), $10.49(s, 1 \mathrm{H}, \mathrm{CHO})$; MS ($\mathrm{m} / \mathrm{z}, \%$): $321(M+2,7.3), 319(M+, 14.7), 178$ (20.1), 150 (17.8), 140 (29.7), 122 (17.4), 114 (16.8), 84 (100), 51 (45.4).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClNO}_{3} \mathrm{~S}$
$Z=2$
$M_{r}=319.75$
Triclinic, $P \overline{1}$
$a=8.048$ (2) A
$b=9.568(3) \AA$
$c=9.931$ (3) \AA
$\alpha=79.433(4)^{\circ}$
$\beta=82.145$ (4) ${ }^{\circ}$
$\gamma=69.839(4)^{\circ}$
$V=703.5(4) \AA^{3}$
$D_{x}=1.510 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2805
reflections
$\theta=2.1-27.1^{\circ}$
$\mu=0.43 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.26 \times 0.20 \times 0.19 \mathrm{~mm}$
Data collection
Bruker SMART APEX area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.902, T_{\text {max }}=0.922$
5482 measured reflections
2805 independent reflections 2240 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.144$
$S=1.03$
2805 reflections
190 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0754 P)^{2}\right. \\
& +0.2825 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.42 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 2-\mathrm{N} 1$	$1.425(3)$	$\mathrm{O} 1-\mathrm{S} 1$	$1.416(2)$
$\mathrm{C} 5-\mathrm{N} 1$	$1.414(3)$	$\mathrm{O} 2-\mathrm{S} 1$	$1.419(2)$
$\mathrm{N} 1-\mathrm{S} 1$	$1.684(2)$		
			$105.61(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$119.4(3)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	$109.76(13)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.6(3)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 10$	$109.54(13)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$119.87(14)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 10$	$105.00(10)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	$105.92(13)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 10$	
$\mathrm{Cl} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-174.54(19)$		

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$	0.93	2.41	$2.991(8)$	120
C16-H16 \cdots O2	0.93	2.34	$2.803(4)$	111
C6-H6 O^{i}	0.93	2.54	$3.333(4)$	143
${\text { C15-H15 } \cdots \mathrm{O}^{\mathrm{ii}}}^{\text {i }}$	0.93	2.58	$3.257(5)$	130

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x,-y+1,-z+1$.

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

organic papers

ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

KP thanks the University Grants Commission (UCG) Herbal Science programme for financial support under the 'University with Potential for Excellence' scheme. The UGC and the Department of Science and Technology (DST) are gratefully acknowledged for financial support to the Department of Crystallography and Biophysics under the UGC-SAP and DST-FIST programmes.

References

Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
Bassindale, A. (1984). The Third Dimension of Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
Farhanullah, S. A., Maulik, P. R. \& Ji Ram, V. (2004). Tetrahedron Lett. 45, 5099-5102.
Govindasamy, L., Velmurugan, D., Ravikumar, K. \& Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 635-637.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zsolnai, L. (1997). ZORTEP. Univeristy of Heidelberg, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

